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A series of experiments have been carried out on gravity currents released from
locks of various dimensions into a sloping, open channel. Initially all the driving
heads of the gravity currents grew by addition of heavier material from a following
down-slope flow and by entrainment of ambient fluid, as in Maxworthy & Nokes
(J. Fluid Mech., vol. 584, 2007, pp. 433–453). After propagating a distance of the
order of 5–10 lock lengths the inflow into the rear stopped, and the head began
to lose buoyancy-containing fluid from its rear by the detachment of large, weakly
vortical structures. At the same time it was still entraining fluid over the majority of
its surface so that its mean density was reduced. Measurements using a semi-direct
method, in which dye concentration was used as a surrogate for density, have shown
that the buoyancy in the current head increased during the first phase and decreased
during the second. At no stage was the buoyancy constant except, of course, at the
location and time at which the buoyancy was maximum with a magnitude significantly
smaller than the initial value in the lock. Despite this the constant buoyancy theory
of Beghin, Hopfinger & Britter (J. Fluid Mech., vol. 107, 1981, pp. 407–422), in which
the head location x varies with time t as t2/3 during the later velocity-decay stage of
the evolution, was found to be remarkably robust as a description of the evolution
over both the latter part of the increasing-buoyancy stage and all of the decreasing-
buoyancy phase. Critically, however, the multiplying coefficient had to be smaller than
presented by them in order to track the experimental data with precision. This was
due principally to the observation that the buoyancy at the beginning of the decay
phase was considerably smaller than the initial buoyancy in the lock.

1. Introduction
This paper is a continuation of the experiments and analysis of Maxworthy &

Nokes (2007) but in a longer, sloping channel fitted with enclosed locks of different
dimensions, i.e ones with various depths and lengths fitted with a solid upper lid,
that were completely filled with dense fluid as in Maxworthy & Nokes (2007). In all
cases the interior of the channel was open to a deep ambient fluid; i.e. there was no
solid top to the channel, and the growth of the current head was not constrained by
presence of a top wall as in the case of a closed channel. In this case the emphasis
is mainly, but not exclusively, on the evolution of the current at later times, after the
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head had reached its maximum buoyancy and was, in fact, losing buoyancy. This is
in contrast to Maxworthy & Nokes (2007), where the emphasis was on the initial
filling of the head with dense fluid. As a result it is possible to make statements about
the further relevance of the theory of Beghin et al. (1981). In this regime the Beghin
et al. (1981) theory reduces to a very simple result that can also be found by trivial
dimensional arguments, the details of which are shown in § 3. This formulation was
then used to examine a wide range of experimental circumstances and to unravel a
number of the physical processes that were at work in this simple geometry.

The environmentally important problem of gravity current (GC) motion over a
horizontal surface has received an enormous amount of attention. Probably the first
location to look for information on the subject is the research monograph of Simpson
(1987) which reviews a wide range of possible cases. There are countless research
papers covering an even wider range of problems, and reference will be made to
the most appropriate and useful ones in what follows. However, for the problem
at hand, the motion of GCs down slopes, the literature is much less extensive. In
fact only a handful of works come immediately to mind. Consider first the work of
Britter & Linden (1980) which considers the case of a constant flow rate of heavy
fluid down slopes at angles to the horizontal (θ) varying from 5◦ to 90◦. In the
theory they presented they made use of experiments by Ellison & Turner (1959)
on turbulent entrainment into a steady, constant flow-rate density current flowing
down a slope and used it to estimate the flow rate into the head of the current and
hence its velocity. While this work has some relevance to the present effort which
is, in essence, an unsteady version of their argument it is experiments by the LEGI
group at the IMG of the University of Grenoble and collaborators on the release
of a fixed volume of dense fluid that is used in what follows. The major interest
of the LEGI group was in the dynamics of powder-snow avalanches, starting with
Hopfinger & Tochon-Danguey (1977) and Tochon-Danguey (1977) and continuing
with Beghin et al. (1981), Laval et al. (1988) and Rastello & Hopfinger (2004). Since
some of these items are to be considered in detail in the theory and discussion
sections of this paper most details are postponed until that time. In summary, their
experiments showed that a constant volume release gave a front velocity that first
increased and then decreased as the square root of distance from a virtual source.
However, in Maxworthy & Nokes (2007) the velocity always increased to a maximum
at a distance from the lock that was considerably larger than that predicted by the
theory. This apparent discrepancy was explained by the observation that the head
was being fed over a considerable distance by a following or feeding current from
the main volume in the lock. This information was then used to modify the theory of
Beghin et al. (1981). The results of Laval et al. (1988) are similar except they use a
much larger initial volume/unit width (400–500 cm2) than used here and in the LEGI
experiments. Other studies that are tangentially related to the present work are those
of Alavian (1986) who looked at three-dimensional sources, Liu, Schlapfer & Buhler
(1991) with a concentration on very small slopes and Luthi (1981) and Kersey &
Hsu (1976) who added surface friction to the Beghin et al. (1981) formulation as did
Rastello & Hopfinger (2000) who also studied the entrainment of particles from an
erodable bed and non-Boussinesq effects. Further studies include those of Webber,
Jones & Martin (1993) and Tickle (1996) who considered the evolution of a wedge-
shaped cloud on a slope with and without entrainment respectively, while the latter
also considered the case of a two-dimensional current.

A recent numerical study of the lock-exchange problem in an enclosed channel on
a slope, i.e. where the lock region and test region have equal lengths and where the
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Figure 1. Unscaled sketch of the test channel, showing the closed lock (L0 × H0) and the
current head at two locations at different times late in the motion. The line joining their
maximum heights defines the angle of growth (α0) and its intersection with the channel base
the virtual origin, at –x0, for the decaying phase of the current head evolution. The angle of
the channel to the horizontal is designated as θ .

L0 = 20 cm L0 = 10 cm L0 = 5.5 cm

H0 = 10 cm 6; 3 4; 4 6; 3
H0 = 5 cm – 5; 3 8; 5
H0 = 2.5 cm – – 8; 5

Table 1. Closed lock. Channel slopes to the horizontal (θ ) 10.6◦ and 5.9◦. The numbers in each
group indicate the number of experiments performed at 10.6◦ and 5.9◦ respectively. Typically
the range of g′

0 in any one of these sequences was between 12 and 120 cm s−2.

top of the channel is closed, has been published by Birman et al. (2007). In this case
the two-dimensional numerical simulations give a head velocity that rises rapidly to
a constant velocity that lasts for about 10 lock heights and then enters an unsteady
phase. In agreement with Maxworthy & Nokes (2007) they also found a feeding
current from the main volume of the lock contents that maintained a high head
velocity. However, the differences in geometry resulted in substantial, quantitative
differences between the two studies.

2. Apparatus and experimental procedure
The channel used in these experiments was manufactured with a running length of

230 cm, width 15.2 cm and height 10 cm. The lock was constructed with three different
lengths (L0) of nominal values 20 cm, 10 cm or 5 cm with a wall added to its top and
a lock gate to initially enclose it completely, i.e. a closed lock, as in the experiments
of Maxworthy & Nokes (2007). Various values of lock height, HO , were used also. A
sketch of the apparatus is shown in figure 1 together with the definitions of the items
of interest. All operating conditions are summarized in table 1.

The initial buoyancy/unit width (B0) in the lock was B0 = g′
0L0H0, where g′

0 =
g(ρC − ρ0)/ρ0; ρC is the density of the fluid in the lock; ρ0 is the density of the
ambient; and g is the acceleration of gravity. The channel was placed in a water-filled
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tank that was 244 cm long, 75 cm wide and 65 cm deep and the free surface of which
was 10 cm above the upper edge of the lock gate in experiments at a slope angle of
θ = 5.9◦ and 5 cm at the maximum possible angle of 10.6◦. Because of the limiting
height of the tank it was not possible to study angles larger than these even though
such a study would have been very desirable; it is therefore left to future experiments
when a deeper tank can be located. As before the diagnostic measures considered
were the x versus t trajectories of the GC head, together with plots of (x + x0)

3/2

versus t that revealed deviations from the theoretical formulation. The reason for the
latter scaling is discussed in detail in § 3. Here x and t are the location and time of
the nose of the current from the lock gate respectively and x0 the distance from the
virtual origin of the motion to the lock gate as shown in figure 1.

When the qualitative observations of previous workers was confirmed, i.e. that there
was a substantial loss of buoyancy from the GC head during its nominally constant
buoyancy phase, it was decided that a more direct measure of the loss was needed
than the indirect method discussed in § 3. In this technique dye was used as a surrogate
for density as in Cenedese & Dalziel (1998), for example. Using a Sony video camera,
with a 3.0 megapixel CCD array, full-frame photographs of the GC head were taken
in two modes. First was a calibration mode: here photographs were taken of acrylic
cells, of the same material and width as the test channel, filled with salt solutions of
known density and linearly related dye concentrations. These were analysed using the
Adobe Photoshop CS3 histogram function to determine the average luminance or
intensity of both the sample (LC) and background (LB) under uniform back-lighting
conditions. Then the quantity LR = (LB − LC)/LB could be related to (ρC − ρ0)/ρ0,
where ρC was the known sample density and ρ0 the known background density of
pure water. The resulting calibration function was very nonlinear; however most of
the present measurements were taken in a regime in which the calibration was close
to linear so that inaccuracies due to the nonlinearity were minimized. This procedure
was repeated with the camera mounted on a moving carriage which was in turn
placed on a track angled at the same value as the channel itself and with the same
backlighting as the calibration test. Individual still images were extracted from the
video tapes and imported into Photoshop CS3. Then, using the lasso and histogram
functions, both the average value of LR over the area of the evolving head and the
area itself could be determined to calculate the buoyancy residing in it at each instant
a photograph was taken. Here, the main reason for any measurement inaccuracy
was the difficulty in deciding the rearward boundary of the head. During the initial
phase of the motion, when buoyancy was still entering the head, this was relatively
straightforward, since the boundary was quite clearly marked by the trailing limit
of the recirculation zone, as in Maxworthy & Nokes (2007). Later, once substantial
shedding of buoyancy took place, in the form of large, dyed vortices that followed
and moved slower than the main head, the demarcation was harder to see, and one
had to rely on viewing the video in real time to see where the dyed, heavier fluid was
being recirculated at the rear of the head. This difficulty can be seen on viewing any of
the photographic sequences that follow in § 4 and by study of the sketches of figure 3
which attempt to remove some of the ambiguity inherent in this process. Many of the
images were analysed several times and in different ways, e.g. by dividing the image
into multiple areas of differing uniform luminosity, i.e. the areas between contours of
constant luminosity, in order to obtain statistics on the errors involved. In this way
an overall error bar of ±10 % was assigned to the measurements. The uncertainty can
be seen also as an increase in data scatter at later times in the plots in the resultant
data.
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3. Theoretical preamble and preliminary discussion of the experiments
As a consequence of the results of Maxworthy & Nokes (2007), in which it was

found that a closed lock with the dimensions 20 cm × 10 cm resulted in an initial
evolution that could only be explained by a theory with increasing head buoyancy, it
was decided to run a series of experiments with locks with various different values of
L0 and H0 but in a longer channel as discussed in § 2. In the majority of this paper
the desire is to explore conditions that lead to a possible GC evolution that more
closely resembles the one with constant buoyancy at the later stages of the motion.

As before the distance of the front of the current, x, from the lock gate was measured
as a function of time, t , from its opening. In order to most readily determine the
predicted scaling for the position history both the raw data, i.e. x versus t and its
derivative U versus x or t , were plotted. In order to emphasize the predicted t2/3

behaviour for x during the decay phase, as determined from Beghin et al. (1981)
and dimensional arguments for ‘constant buoyancy’, (x + x0)

3/2 versus t , was plotted,
i.e. taking the 3/2 power of (3.1). Here x0, as in Maxworthy & Nokes (2007), is the
distance between the location of the virtual origin and, in this case, the lock gate.
This quantity was determined by extrapolation to the bottom of the channel from
estimates of the spreading angle of the maximum height of the head (α0) of the
current over the decaying portion of the velocity history, as shown in figure 1 and
tabulated in table 2(a) in § 5. Thus, the measured slope K of the plots of (x + x0)

3/2

versus t , if constant over a significant range of x and t , should give one dimensionless
measure of the decay. Then the time from the virtual origin t0 could be found by
extrapolation. The estimate of x0 given above was used as a first guess, while values
both slightly larger and smaller were also used to give a realistic range of values of
the constant of proportionality (KM ) in the equation

(x + x0) = KMB
1/3
0 (t + t0)

2/3, (3.1)

where KM = K2/3/B
1/3
0 is a quantity that one might expect to be constant at any given

value of θ . As mentioned above, the present experiments show that this is not so and
that the geometry of the lock and variations from experiment to experiment also play
a role.

It seems natural to present the results in dimensionless form, but one can argue that
that, in a sense, (3.1) is already dimensionless. This can be rationalized as follows:
Note that B0 =A0g

′
0, where A0 = L0H0. Hence B

1/3
0 = A

1/2
0 (g′1/3/A

1/6
0 ). Then (3.1) can

be written exactly as

(x + x0)/A
1/2
0 = KM

[
(t + t0)/

(
A

1/4
0 /g′1/2

0

)]2/3
. (3.2)

From this it is clear that the most important dimensionless quantity to be determined
from the experiments is KM , since it is a measure of the non-universality of the
scaling from experiment to experiment. At the same time the dimensionless quantities
determining the location of the virtual origin can be tabulated (see table 2b in
§ 5) as x0/A

1/2
0 and t0/(A

1/4
0 /g′1/2

0 ). All three should be independent of B0 and only
depend on the channel slope, θ, and the lock aspect ratio, L0/H0. However, the
detailed results suggest that this simple suggestion needs to be supplemented by
some new and, as yet, unknown proposal. In what follows the raw data is used to
determine KM , x0 and t0, while the appropriate dimensionless values are to be found in
table 2(a, b) in § 5.

By differentiating (3.1) the velocity of the front (U ) is given by U = dx/dt =
(2KM/3)B1/3

0 (t + t0)
−1/3, with B0 initially assumed to be a known independent quantity.
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In this case U can be made dimensionless using the independent velocity scale
A

1/4
0 g′1/2

0 .
Over the wide range of experiments that were performed it was found that the

behaviour of current obeyed the prescription given above, based on the simplest
dimensional arguments, in an approximate sense. In fact, variations with exponents
slightly numerically smaller than 2/3 gave a better statistical fit to the data, although
the t2/3 result was considered to be a very good first approximation under most
conditions. Also, a scaling with B

1/3
0 did not result in a universal multiplicative

constant, KM , at a given angle and aspect ratio as might be expected, although
it is not unreasonable to use an average value under appropriate circumstances
as discussed in § 5. It is proposed that these latter effects were firstly the result of
incomplete capture of the buoyancy in the initial lock charge that varied somewhat
from experiment to experiment, as in Maxworthy & Nokes (2007), and subsequent
removal of buoyancy from the driving head of the current. That is once the head
had gained its maximum buoyancy from the following current, which was invariably
less than the full value, as discussed in detail in Maxworthy & Nokes (2007), it did
not propagate with that value but with a value that was continuously decreasing.
Somewhat surprisingly, as shown later, these effects could not be captured entirely
by the expected dependence on lock aspect ratio at a given slope. To show this test
sequences were run with the values of L0 and H0 given in table 1 for closed locks
to determine under what circumstances any given history was followed. This was
quantified by (i) comparing with the gain and subsequent loss of B measured directly
using the quantitative photographic method detailed in § 2 and (ii) a comparison of
the measured value of KM with the equivalent value KB from the Beghin et al. (1981)
theory. The first technique is discussed in § 2, while the second is discussed below.

3.1. Use of the Beghin et al. (1981) theory to estimate buoyancy loss when x

nominally varies as t2/3.

From the theory of Beghin et al. (1981) one can quantify the loss of buoyancy in
some averaged sense during the later part of the head evolution. That theory can be
cast in a form that allows direct comparison with the experimental measurements.
Thus the decay law can be written as

(x + x0) = KBB
1/3
0 (t + t0)

2/3, (3.3)

where KB is the theoretical equivalent of the experimentally measured quantity KM .
Then from the Beghin et al. (1981) theory

KB = 1.333
[
1 + 0.449(1 + k2)1/2α0/k

][
k sin θ/α2

0(1 + 4k2)(1 + 2k)
]1/3

, (3.4)

where k = H/L in which H is the local height and L the local length of the head, and
the term [B/B0]

1/3 has been removed so that it can be calculated by comparing the
measured value of KM with the theoretical value KB . Thus when [B/B0]

1/3 is unity the
current propagates with the full initial buoyancy, and the two values of K are equal.
However, if KM < KB , as in fact observed, then the ratio [B/B0] = [KM/KB]3 and a
measure of the buoyancy loss to the driving part of the current, the head, can be
estimated. Note also that the Beghin et al. (1981) equation has been modified in two
ways. Firstly, their equation (3) has been used to translate from their growth rate α to
the present measured α0, i.e. α = [2S1/S2k

1/2]α0, while their equation (4), for L versus
x, has been used to correct from their centre of mass coordinate system to the present
system that uses the nose location as the most conveniently measurable quantity, i.e.
a difference of L/2, where L is the length of the head region. On plotting (3.4) it
was found that the dependence on k was weak and that the main effects were due to
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the sin θ/α2
0 combination, so a value of k = 0.25 has been used in what follows, as

in Maxworthy & Nokes (2007).

4. Results
In what follows the values θ = 10.6◦ and θ = 5.9◦ were considered for each value

of L0 and H0 in table 1 for a total of 60 experiments. To make for a more compact
presentation only a few cases will be considered in enough detail to make the different
flow states clear and to indicate the important dynamical processes at work. Other
cases will be treated briefly by giving only essential details and by referring to
the details of earlier cases as needed. The experimental results are summarized in
table 2(a, b).

4.1. θ = 10.6◦; L0 = 20.1 cm; H0 = 9.7 cm

This case is a direct extension of the only lock geometry considered in Maxworthy &
Nokes (2007). In figure 2 a series of photographs shows the evolution of the current
beyond that seen in Maxworthy & Nokes (2007). After the gate was opened a small,
well-defined head formed quickly on the outflow followed by the rest of the lock
charge (figure 2a). A feeding current joined the two. As time proceeded the following
volume collapsed to produce a thin, down-flowing layer of heavy fluid that persisted
until about x = 100 cm (figure 2c). Thereafter the head lost its relatively compact
shape, split and left behind a great deal of buoyant fluid. In the final stage (figures 2e
and 3e) the ‘active’ head was still quite short, approximately 35–40 cm long, followed
by a diffuse cloud of negatively buoyant fluid. The term ‘active’ is used here, and
elsewhere, to indicate the region between the nose of the current and a clockwise-
rotating vortex that separated the head from the following fluid. Here clockwise is to
indicate the sense of rotation in the views of figure 2. The rotor can be seen quite
clearly at early times at the rear of the head in figure 2(a–c).

One of the more interesting discussions that can be extracted from photographs
like those of figure 2 is an explanation of the evolutionary process of the current from
its release to the final state reached here. To help this discussion somewhat idealized
sketches like those of figure 3 are very useful.

The main observations are outlined in the caption to figure 3. However, several
points should be emphasized and enlarged upon. Upon opening the lock gate a
two-layer outflow/inflow was formed (figure 3a). Based on intuition one might expect
this state to continue indefinitely. However, the intense shear over the inflow/outflow
caused both to evolve into antisymmetric, compact head regions in this Boussinesq
limiting flow. The inflow head was destroyed by interaction with the end wall, where
it plunged to the bottom of the lock and partially mixed with the heavy fluid residing
there. In the meantime the outflow head moved down slope both entraining ambient
fluid and being fed by the relatively narrow following layer, as in Maxworthy &
Nokes (2007). The head maintained its integrity due to the influence of this following
inflow at the rear of the head. Further down the slope the head outran the inflow
and immediately began to break apart (figure 3d ). At each stage thereafter the ‘active
head’ continued to grow by the entrainment of ambient fluid and, at the same time,
lose buoyancy through the periodic shedding of turbulent vortices into a wake as
the Kelvin–Helmholtz instability over the head grew to a very large amplitude and
reached the bottom of the channel.

In figures 4–6 are shown some of the diagnostic plots that quantify the picture
suggested by the flow visualizations. Figure 4 is the raw data plot of x versus t showing
the initial acceleration and subsequent deceleration. These are shown more clearly in
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(a)

(b)

(c)

(d )

(e)

Figure 2. Experiment 7/3/06-1. An evolving GC on a 10.6◦ slope, from a 20.1 cm long,
9.7 cm high lock; g′

0 = 12.65 cm s−2; B0 = 2467 cm3 s−2. In (a) x = 30 cm. The head is well
formed and is fed by a feeding current from a large following volume. Also, note the head
formed on the upper layer moving back into the lock. In (b) x = 85 cm. The head is still well
developed with a weakened or, perhaps, zero-flux feeding current. In (c) x = 105 cm. The head
is beginning to break up, as the feeding current has zero or close to zero flux into the head. In
(d ) x = 168 cm. Feeding-current flux is zero. The head is mixing strongly from the rear and
is spreading rapidly. In (e) x = 212 cm. Final stage: substantial buoyancy has been shed into
the following, low-velocity flow. The vertical marks are 10 cm apart. Unfortunately due to
the limited resolution of the photographs taken from video tape their numerical x values are
indistinct. In order to compensate the x positions of the nose of the head are given in the
caption for each image, while the vertical lines are 10 cm apart.
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Lock gate

(a)

(c)

(b)

(d)

(e)

Figure 3. Sketches of the evolution of the GC. (a) Upon the rapid withdrawal of the lock
gate a two-layer outflow/inflow was formed. The layers were of more-or-less equal height.
(b) Head regions formed rapidly from the instability of both the inflow and the outflow (see
figure 2a). Especially critical is the distortion of the following outflow layer to less than half
of its original thickness by flow over the outflow head. (c) Initially, as in Maxworthy & Nokes
(2007), buoyancy was fed into the head by inflow from the following layer. (d ) At this stage
the inflow had stopped, and the head immediately began to shed buoyancy to a wake-like
structure. However, the head was still entraining ambient fluid over its surface and into its rear.
(e) The final stage in which more ambient fluid was entrained while, periodically, buoyancy
was shed from the rear of the head. The shaded area is what is called the ‘active head’ in the
text.

figure 5 where the velocity, U, is shown as a function of x for two cases. This result was
plotted from the differentiation of a sixth-order fit to the x versus t data and shows, in
one case, that the maximum velocity Umax of 8.9 cm s−1 (Frmax =Umax/(H0g

′
0)

1/2 = 0.84)
was achieved at x = 100 cm. Due to the nature of the curve fitting over a restricted
range of x the velocities near the end points are contaminated by the lack of data
before x = 0 and beyond x = 200 cm and, in particular, do not show a possible x−1/2

behaviour at larger x, and their values also do not start from zero at x = 0. Six
experiments were run for the same geometric conditions but different values of g′.
The average value Frmax was found to be 0.83 ± 0.01; however, as shown in figure 5
the U versus t plots had two very different basic shapes. Of the six experiments three
had one maximum; two had two maxima; and the sixth was somewhere between
the two. This observation is certainly a partial explanation for the substantial scatter
found in the Maxworthy & Nokes (2007) experiments and is most certainly the result
of different turbulent evolutions of the heads each case.

In order to examine the long-term behaviour the data was replotted as (x +
x0)

3/2 versus t , with x0 found as discussed before. This form was used with the
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Figure 4. Experiment 6/3/06-3: x versus t for A
1/2
0 = 13.9 cm; g′

0 = 11.58 cm s−2;

B0 = 2246 cm3 s−2; L0 = 20.0 cm; H0 = 9.7 cm.
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Figure 5. Experiments 6/3/06-3 and 7/3/06-1, showing differences in velocity history for
similar initial parameter values (g′

0 is of the order of 12 cm s−2). 6/3/06-3: Frmax = 0.84.
7/3/06-1: first Frmax = 0.78; second Frmax =0.81.

background knowledge that the Beghin et al. (1981) theory gives a decay of the form
x + x0 = const t2/3, for constant buoyancy, but as will be seen this seems to be an
oversimplification. Figure 6 is the result of such a plot for experiment 6/3/06-3.

Based on the curve fit shown one can calculate that the decay region is given by

(x + x0) = 2.58B
1/3
0 (t + t0)

2/3

if one assumes the buoyancy does not vary. The average value of the constant over
the six experiments was 2.66 ± 0.06. From this comes the first clue as to the processes
involved, since if one uses the Beghin et al. (1981) theory, i.e. (3.3), to calculate the
value for this constant with the full initial value of B0 one finds magnitudes that
are considerably larger than this, suggesting that the full buoyancy is not acting
on the current at this late stage. This point is raised here to indicate that it will
be a continuing observation and a major component of the discussion section (§ 5)
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Figure 6. Experiment 6/3/06-3: (x + x0)
3/2 versus t for A
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0 = 13.9 cm; g′

0 = 11.58 cm s−2;

B0 = 2246 cm3 s−2. The line shown is the best fit straight line to the final decay and gives a
value for the multiplicative constant (197.2 in this case) in the fitting equation. In this case the
maximum velocity (Frmax = 0.84) occurs at about t =13.5 s and x = 100 cm.

together with a commentary on the connection between the flow visualizations and
the quantitative data.

4.2. θ = 5.9◦; L0 = 20.1 cm; H0 = 9.7 cm

Since the equivalents to figures 2–6 are similar for this case only the measured average
parameter values will be presented. There was still an extensive acceleration region
in three experiments with a maximum velocity reached at x = 125 ± 15 cm with the
maximum Fr = 0.75 ± 0.03. The final decaying phase of the motion gave an average
value of KM , over the three experiments, of 2.94 ± 0.10.

4.3. θ =10.6◦; L0 = 10.2 cm; H0 = 10.1 cm

This case is the next logical one to consider after the one discussed in § 4.1. The lock
was essentially half as long and also approximately 10 cm high, with half the initial
volume/unit width. Although this case has many similarities with the previous ones
there are subtle differences that need to be explored. Figure 7 is the first evidence of
these differences.

The initial motion has, as might be expected, a far smaller feeding current and
trailing volume. This results in a shorter acceleration period and a maximum velocity
reached much sooner than previous examples. Figure 8 quantifies this effect with a
maximum velocity reached at approximately half the distance found with the 20 cm
long lock. A t−1/3-like velocity decay appears to start almost immediately after the
maximum velocity peak, but the detailed analysis in § 5, and below, shows that this
is not correct. As before end points should be ignored in these data from the curve
fit to the x versus t data. Plots of x versus t and (x + x0)

3/2 versus t are similar in
form to those found before and need not be shown. Averaging four experiments gives
Frmax = 0.78 ± 0.02, occurring on average at x =56 ± 5 cm while Km = 2.89 ± 0.09
with x0 = 110 ± 10 cm.
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(a) (b)

Figure 7. Experiment 17/2/06-1. Two photographs of the current, for the conditions
θ = 10.6◦, L0 = 10.2 cm, H0 = 10.1 cm, g′

0 = 15.50 cm s−2, B0 = 1597 cm3 s−2 (a) at the beginning
of the motion and (b) at the end. In (a) the head is well formed, but the following volume and
the feeding current are small, leading to a more rapid attainment of the maximum velocity. In
(b) the leading head is well formed but has left behind a large volume of negatively buoyant
fluid. The thick black vertical line in (a) is one of the side-wall support posts.
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Figure 8. Experiment 17/2/06-1: U versus t for θ = 10.6◦; L0 = 10.2 cm; H0 = 10.1 cm;
g′

0 = 15.50 cm s−2; B0 = 1597 cm3 s−2. The maximum velocity is reached only a short distance
down the channel with Frmax = 0.75.

A much later experiment (18/9/07) in this sequence was undertaken using the
dye/luminosity technique of § 2 in order to unambiguously identify the buoyancy
loss during the later stages of head motion. For this case g′

0 = 53.3 cm s−2

and B0 = 5490 cm3 s−2, and the relevant experimental result for the decay was
(x + x0) = 2.70B

1/3
0 (t + t0)

2/3 as discussed in detail in § 5, figure 16. Figure 9(a–c)
shows the result of the measurements of average dimensionless density difference
between the head and its surroundings, area and buoyancy B/B0 versus x. One must
assume that during the increasing part of the B/B0 history dense fluid was being added
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Figure 9. For caption see next page.

to the head from the following current and that during the decreasing part it was
being lost to a wake. A study of the video record suggests that the transition between
the two was quite abrupt, since the head form changed quite dramatically when the
stabilizing influence of the following flow was lost. Of course the interesting result
here is that it appears the t2/3 dependence is quite good even though the buoyancy is
not constant. This apparent contradiction and related matters will be discussed in § 5.
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Figure 9. (a–c). Test 18//9/07. Dimensionless average head density difference, area and total
buoyancy versus x, for the initial conditions g′

0 = 53.3 cm s−2, B0 = 5330 cm3 s−2, L0 = 10 cm
and H0 = 10 cm. The gaps in the data are due to the shielding of the head by the sidebar
supports of the tank.

4.4. θ = 5.9◦; L0 = 10.2 cm; H = 10.1 cm

Again this series of four experiments have characteristics similar to those that have
gone before except for a change in trend shown in figure 10. The approach to the t2/3

decay is from below in all experiments in contra-distinction to the previous cases in
which it was from above. This effect seems to be typical of experiments with a ‘low’
driving force, i.e. small angle or smaller lock dimensions. An extreme example is shown
in § 5, figure 17. As before there was a substantial loss of negatively buoyant fluid
before the head reached the end of the channel. The averaged resulting parameters
for the series of four experiments are Frmax = 0.71 ± 0.04 at x = 59 ± 6 cm, while the
averaged KM = 2.78 ± 0.04.

4.5. θ = 10.6◦; L0 = 5.5 cm; H0 = 9.7 cm

The case has, yet again, half the length and volume of the preceding case. Photographs
of the initial, intermediate and final head shapes are shown in figure 11.

The x versus t representation (figure 12) shows a very smooth transition from
a short acceleration period to a nominal t2/3 behaviour (figure 13) with a sizeable
intermediate region. Although the latter transition is quite difficult to determine
exactly the agreement with the 2/3 law is, at first sight, good but slightly smaller
exponents gave a better statistical fit. Over six experiments, for different values of g′

0,
the average Frmax = 0.70 ± 0.05 at x = 41 ± 2 cm, while KM =2.94 ± 0.07.

This geometry was chosen as a second test using the dye/luminosity technique
with g′

0 = 51.5 cm s−2 and B0 = 2750 cm3 s−2. For the decaying phase of the motion
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Figure 10. Experiment 17/2/06-5: (x +x0)
3/2 versus t for θ = 5.9◦; t0 = 10.2 cm; H0 = 10.1 cm;

g′
0
= 15.5 cm s−2; B0 = 1597 cm3 s−2. In this case, as distinct from those that have gone before,

the approach to the straight line representing the expected decay is from below.

(x + x0) = 2.85B
1/3
0 (t + t0)

2/3, while the plots of the dimensionless average density
difference, area and total buoyancy as functions of x are shown in figure 14(a–c).

Here the buoyancy loss is larger than in the previous case, but the modified Beghin
et al. (1981) theory appears to describe the loss reasonably well.

4.6. θ = 5.9◦; L0 = 5.5 cm; H0 = 9.7 cm

The results for this geometry are similar to those immediately above. A well-formed
head appears immediately upon release of the lock charge, accelerates quickly to
its maximum velocity and then mixes violently as it propagates down the channel,
leaving a trail of dense fluid that is almost uniform (figure 15). The final head is,
again difficult to distinguish from the still photographs, but the videos show that
the following vortex that closes the head is about 25 cm long and 7.2 cm high, i.e.
k = H /L = 0.26. From three experiments Frmax = 0.67 ± 0.05 at x = 40 ± 1 cm, while
KM = 2.61 ± 0.01.

4.7. A brief presentation of experiments with nominally 5 cm and 2.5 cm high locks.

The results for these locks are superficially similar to those described above when
plotting x versus t or when viewing the raw photographs. However, differences become
apparent when plotting (x + x0)

3/2 versus t . The tendency to a nominal straight line
fit is somewhat different from case to case. This suggests that subtle differences in
buoyancy loss and gain are present that are not obvious from simply studying the
videos of the head evolution. In general the values of KM are smaller than for the
deeper locks, while the initial motion, for all of the 5.9◦ cases, seems to follow an
initial law that is close to one that varies as t2/3 before transitioning to the final t2/3

relationship (see § 5, figure 17). It is possible that for these weaker currents the head
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(a)

(b)

End of head

(c)

Figure 11. Experiment 10/2/06-1. L0 = 5.5 cm, H0 = 9.7 cm, g′
0 = 29.23 cm s−2; B0 =

1559 cm3 s−2. Showing that just after reaching maximum velocity in (a) at x = 50 cm the
feeding current has no input into the head. In (b) x = 90.5 cm; here a substantial volume
of heavy fluid has been rejected rearwards, leaving the head with lowered buoyancy. In
(c) x = 215 cm. In the final stages the head is very diffused with no clear demarcation of its
rear end. From the video it is possible the pick out the location at which the trailing vortex
ends near the mark 180 cm, i.e. the third vertical marking from the right. These lengths are
actually 55, 95.5, 220 and 185 cm from the lock gate, since the shortening of the lock changed
the zero position, while the markings themselves were not changed.

Reynolds numbers (UH/ν, where U is the head velocity, H its maximum height
and ν the fluid kinematic viscosity) were low enough for viscous effects to be more
important than in the deeper lock cases. Values in the range 1000–2000 were estimated
for these cases. In previous work values in this range were thought to give results
independent of viscous effects, but this may not be true here. Values of KM, x0/A

1/2
0

and t0/(A
1/4
0 /g

′1/2
0 ) for these cases are given in table 2(b) in § 5.
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slow transition to a nominal t2/3 behaviour, due to the substantial vortex/buoyancy shedding
shown in figure 11(b).
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Figure 13. Experiment 10/2/06-4. Same conditions as figure 12. The region between the point
of maximum velocity and the transition to t2/3 behaviour is the time taken to shed a major
portion of the initial buoyancy, as shown in figure 11(b).

5. Discussion and conclusions
The main discussion concerns the observation that much of the initial charge either

never enters or is eventually lost from the leading head region so that it would seem
reasonable to expect that the final decay stage would be described by a law that
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Figure 14. For caption see facing page.

reflects this fact. Using the theory of Beghin et al. (1981) one can quantify this effect
to some degree. As discussed in § 3.1, theory can be cast in a form that allows direct
comparison with the experimental measurements. Thus the decay law can be written
as in the results section as

(x + x0) = KBB
1/3
0 (t + t0)

2/3,
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Figure 14. (a–c). Experiment 25/1/08: L0 = 5.5 cm, H0 = 9.7 cm. Dimensionless average
density difference, area and total buoyancy versus x. Initial conditions are g′

0 = 51.5 cm s−2

and B0 = 2750 cm3 s−2.

Figure 15. Experiment 15/2/06-3: θ = 5.9◦; L0 = 5.5 cm; H0 = 9.7 cm; g′
0 = 25.80 cm s−2;

B0 = 1348 cm3 s−2. Showing that the initial head has mixed extensively when its nose is
115 cm from the lock. The buoyancy is distributed over approximately 60 cm or 11L0. The
head is closed about 25 cm behind the nose and k ≈ 0.26.

where KB is the equivalent of the experimentally measured quantity KM . Then from
the Beghin et al. (1981) theory one can estimate the effective buoyancy (B ) acting on
the GC head as

[B/B0] = [KM/KB]3.

On plotting (3.4) it was found that in the range of interest the dependence of KB

on k was weak and that the main effects were due to the sin θ/α2
0 combination, so a

value of k = 0.25 has been used here, as in Maxworthy & Nokes (2007). Then based
on the values of the coefficients KM reported in the table 2(a) can be constructed for
the cases with Ho nominally equal to 10 cm.
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Angle L0 (cm) KM α0 KB KM/KB B/B0

θ = 10.6◦ 20.1 2.66 ± 0.04 0.037 ± 0.005 3.69 ± 0.4 0.72 ± 0.1 0.37+0.18
−0.13

10.1 2.89 ± 0.09 0.033 ± 0.005 4.05 ± 0.4 0.71 ± 0.11 0.36+0.19
−0.14

5.5 2.94 ± 0.07 0.025 ± 0.008 4.66 ± 1.1 0.63 ± 0.22 0.25+0.36
−0.18

θ = 5.9◦ 20.1 2.84 ± 0.10 0.031 ± 0.005 3.44 ± 0.4 0.82 ± 0.14 0.55+0.33
−0.23

10.1 2.70 ± 0.04 0.029 ± 0.03 3.60 ± 0.2 0.75 ± 0.02 0.42+0.04
−0.03

5.5 2.61 ± 0.01 0.025 ± 0.006 3.84 ± 1.0 0.68 ± 0.24 0.31+0.47
−0.22

Table 2a . Table showing the estimated effective buoyancy ratio, B/B0, during the decaying
phase for all the experiments of table 1 for which H0 is nominally 10 cm.

Angle L0 (cm) H0 (cm) L0/H0 KM x0/A
1/2
0 t0/(A1/4

0 /g′
0
1/2) Frmax

θ = 10.6◦ 20.1 9.7 2.07 2.66 ± 0.04 7.9 ± 0.7 1.59 ± 1.42 0.83 ± 0.01
10.0 5.0 2.00 2.77 ± 0.05 11.2 ± 1.1 3.81 ± 2.3 0.77 ± 0.03
5.5 2.5 2.00 2.62 ± 0.14 16.2 ± 2.7 28.9 ± 8.5 0.79 ± 0.05

10.1 10.0 1.01 2.89 ± 0.09 10.9 ± 1.0 4.79 ± 1.3 0.78 ± 0.02
5.0 5.0 1.00 2.53 ± 0.10 13.3 ± 1.9 16.7 ± 3.5 0.75 ± 0.04
5.5 9.65 0.57 2.94 ± 0.07 12.5 ± 1.4 9.30 ± 5.1 0.70 ± 0.05

θ = 5.9◦ 20.1 9.7 2.07 2.84 ± 0.10 14.6 ± 1.4 11.2 ± 1.2 0.75 ± 0.03
10.0 5.0 2.00 2.47 ± 0.03 29.0 ± 1.4 28.4 ± 20.5 0.72 ± 0.02
5.5 2.5 2.00 2.45 ± 0.15 16.1 ± 2.7 44.1 ± 15.8 0.75 ± 0.09

10.1 10.0 1.01 2.70 ± 0.04 17.8 ± 2.0 17.1 ± 1.5 0.71 ± 0.04
5.0 5.0 1.00 2.36 ± 0.12 12.7 ± 2.0 46.1 ± 14.2 0.66 ± 0.02
5.5 9.65 0.57 2.61 ± 0.01 25.7 ± 2.8 10.5 ± 2.8 0.67 ± 0.05

Table 2b. The dimensionless dependent variables KM , x0/A
1/2
0 , t0/(A

1/4
0 /g

′1/2
0 ) and Frmax as

they depend on θ and L0/H0. Each value is the average of between four and eight experiments.
The error estimates are to add and subtract the maximum and minimum values and are not
the r.m.s. estimates.

Table 2(b) is a compilation of the interesting dimensionless dependent variables for
the whole range of experiments. They are arranged by channel angle and lock aspect
ratio, L0/H0, and include KM , x0/A

1/2
0 , t0/(A1/4

0 /g
′1/2
0 ) and Frmax .

The results shown in table 2(a,b) allow for some interesting conclusions. Starting
with table 2(a). The results for B/B0 are surprisingly consistent, although the error
estimates, which represent the maximum and minimum and not root mean square
(r.m.s.) values, are very large. Nonetheless, the results point to both an incomplete
capture of the initial buoyancy, B0, and a sizeable buoyancy loss during the decay
phase of the motion, as found by the dye-transmissivity technique and noted below.
Even though the values of KM tend to increase with decreasing L0 the resulting values
of B/B0 are reduced, as L0 is reduced, and increased for the smaller value of θ .

The results of the dye/luminescence experiments can be used to support these
results and the consequences that follow from them. For the first case, 18/9/08,
with a 10 cm × 10 cm lock and θ = 10.6◦ the value of KM = 2.70, as presented earlier.
Based on the measurements of the head geometry as it propagates, i.e. α0 and x0,
and using (3.3) the value of KB that results is 3.95. Thus KM/KB = 0.683 so that
B = 1765 and B/B0 = 0.321 cm3 s−2. This latter value is plotted in figure 7(b), where
it is seen to fall at approximately the average value of B during the decay phase.
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equation describes the evolution from somewhat before the decay phase as well as the decay
phase itself, which starts at around 8 s, i.e. at the location of the arrowhead.

What is even more striking is that KM =2.70 actually describes the evolution over
a much larger range of time or distance than even the decay phase, as shown
in figure 16.

Thus it appears that the averaged equation can describe the consequences of both
the late part of the increase and all of the decrease in buoyancy shown in figure 7(b),
to a very good degree of accuracy. If one were not aware of the details of the
buoyancy history one would be tempted to conclude, based on figures like figure 16,
that the decay started much sooner than it actually did, a rather surprising finding,
and that the t2/3 behaviour is a good fit to the data under many circumstances.

Carrying out this same type of analysis on experiment 25/1/08 with a lock
that was 10 cm high and 5 cm long gave KM = 2.85, KB = 4.25, B/B0 = 0.30 and
B = 825 cm3 s−2. This result is plotted in figure 14(c), where again it lies within
the variation of B/B0 found directly. A plot like that presented in figure 16 again
shows that the averaged equation describes both part of the increasing, to a good
approximation, and all of the decreasing part of the buoyancy variation.

Also, note that the values for α0 for the longer lock are slightly smaller than those
given in Maxworthy & Nokes (2007) and Beghin et al. (1981). This is the result of
measuring them only over the decaying part of their U versus t history and does not
include the period during which buoyancy and mass were being added to the head
region.

The results shown in table 2(b) are less readily explained without making radical
assumptions. Firstly, while the trends in Frmax are consistent with intuition, i.e.
the values decrease with decreasing θ , there appears to be no reasonable scaling law
between them. For example, the power law relationship between Frmax and the logical
choice sin θ does not appear to depend on any plausible exponent, e.g. one half. So
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the results just stand as a measured consequence of the experiments. The variations
of Frmax with the dimensions of the lock, at any one of the two slopes, appear to
scale with the lock aspect ratio in three out of the four cases in which there is more
than one experiment to make such a comparison. The reason for the deviation in the
one exceptional case is unclear except to note that it is for the lowest angle and a
relatively small lock. This point will be raised again in what follows, where a more
complete explanation will be attempted.

Other aspects of the results are more difficult to rationalize. Thus for constant
L0/H0 and θ in table 2(b), KM , x0/A

1/2
0 and t0/(A1/4

0 /g
′1/2
0 ) do not appear to be

constant as one might expect. Since it was very difficult to measure the very small
values of α0 with great accuracy and then extrapolate over such long distances to
zero height, as sketched in figure 1, the errors in x0 are large. This is then reflected in
the error values for the dimensionless quantity KM as well. For KM one could argue
that the values are constant within the error estimates given. Using this approach
the average values of KM(Av) = 2.73 ± 0.20 and 2.57 ± 0.21 for θ = 10.6◦ and 5.9◦

respectively. Then the dimensionless averaged displacement–time relationship

(x + x0)/A
1/2
0 = KM(Av)

[
(t + t0)

/(
A

1/4
0

/
g

′1/2
0

)]2/3

can be used to determine the behaviour over all conditions of buoyancy and geometry,
within the limits set by these experiments. Clearly, to obtain the actual motion in
physical (x–t) space one needs to know the values for x0/A

1/2
0 and t0/(A1/4

0 /g′1/2
0 ) for

the actual conditions of any proposed experiment. The erratic dependence of these
quantities on aspect ratio and slope makes it unclear what the correct scaling might be.
For x0/A

1/2
0 , for example, there are only two other independent length scales, namely

L0 and H0 themselves. Clearly using either of them does not solve the problem, since
x0/H0 = x0/A

1/2
0 (L0/H0)

1/2, and with L0/H0 assumed constant there is no advantage

in using these alternatives. Similarly, using t0/(H 1/2
0 /g

′1/2
0 ) as the dimensionless version

of t0 results in no advantage over the form chosen. Again one might be tempted to
use averaged values except for some large deviations in t0/(A1/4

0 /g′1/2
0 ) in particular.

These occur for the smaller locks and the lowest angle and are the result of (x +x0)
3/2

versus (t + t0) plots which are quite different from those shown in figures 4, 10, 13
and 16 in which the deviation from the straight line of (3.1) is relatively small over
the whole range of any one experiment. A typical case is shown in figure 17, where
both x and (x +x0)

3/2 versus t are shown. In this case and others like it the maximum
velocity was reached very quickly, typically within five or six lock lengths, and the
approach to the ultimate t2/3 behaviour was very slow. In fact, there appears to be
a region of intermediate t2/3 behaviour after the maximum velocity and before the
final decay law. The value of KM for this intermediate region is large and would
suggest that a large fraction the initial buoyancy was contained in the head. However,
a careful study of the video for this period of time was ambiguous on this point, but
such a study does show that in many cases transition between the two regimes was
accompanied by a large loss of buoyancy in one large eddy, see e.g. figure 11(b). Then
the existence of an extensive region before the final decay means that the latter starts
later in the sequence, resulting in large values of t0. At the same time for these cases
A0 was small so that t0/(A1/4

0 /g
′1/2
0 ) is large as noted in table 2(b). As noted previously

one might be inclined to speculate that this anomalous behaviour is due to viscous
effects, but typical Reynolds numbers are in the range of 1000–2000 over most of the
current’s evolution. At such values it has been generally felt that viscous forces are
not an important effect in the GC force balance, but the present cases might prove
to be an exception to this belief.
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Figure 17. Experiment 3/2/06-6 with L0 = 5.5 cm, H0 = 2.5 cm, θ = 5.9◦, g′
0 = 78.7 cm s−2,

B0 = 1082 cm3 s−2; x and (x + x0)
3/2 versus t , showing two regions in which the classical

decay law seems to apply and the late start of final decay. The quoted value of x0 applies to
both the intermediate and the final decay periods; t0 applies to the final decay only.

These experiments have confirmed the idea that there is a substantial buoyancy
loss from the propagating head. In fact, if the channel had been substantially longer
it seems quite likely that all the buoyancy would have eventually been mixed out
and that the current would have moved as a long, coherent cloud with distributed
buoyancy rather than a denser head with a slower moving tail. This is partially
confirmed by the experiments of Laval et al. (1988) who showed, in their figure 2, the
continuous shedding of buoyancy over a distance of 4 m. It is also characteristic of
mixing fronts in long, tilted tubes (see e.g. Seon et al. 2007). A similar possibility is
suggested by the present experiments, e.g. figure 11(c).

While the conclusions stated above are quite unambiguous the question arises as
to whether the effects are important enough to warrant a complete overhaul of the
existing constant buoyancy theories. Such a revision would, of necessity, be quite
complex, and it is not clear that such an effort is required. The exponent of the
head displacement history is close to that from the constant buoyancy theory, and
for most purposes that description is probably quite adequate, although slightly
smaller values than 2/3 actually give a marginally better statistical fit to the data.
For a successful theory all that is needed is to have some estimate of the average
buoyancy, as measured by (KM/KB)3B0, and then the constant buoyancy theory
works quite well. How one evaluates this quantity in any one case is difficult to
determine. Clearly, the main effort should be in developing a good estimate of the
amount of buoyant fluid that enters the head during its initial motion, as measured
by Maxworthy & Nokes (2007), for example. Even this effort is a substantial one
depending as it does not only on the speed and growth of the head but also the
evolution of the down-slope, turbulent, stratified and unsteady feeding current, i.e.
an unsteady version of the Ellison & Turner (1959) results. From table 2(a) and
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for the larger locks, KM varies over a limited range from 2.61 to 2.94, and so one
might be tempted to use some mean value for each slope, as noted previously. This
would certainly be an improvement over using the value KB given by the Beghin
et al. (1981) theory, for example. While it is certainly true that these results can be
carried over to situations similar to the ones studied here, e.g. to somewhat larger
channel slopes, it is unlikely that they can be used to understand situations under
radically different conditions. Consider, for example, the study of currents driven by
dense fluid/particle mixtures. In this case particle deposition to and erosion from
an underlying bed will also be available to change the head buoyancy. There will
still be buoyancy gain by a following flow and loss by shedding into a wake, but the
quantitative effects will be quite different from those presented here. These effects need
to be carefully evaluated to determine their effects in models that assume constant
buoyancy.

The only other set of data that seems relevant to the present work is that of
Rastello & Hopfinger (2004). In their figure 11 the velocity history for a lock of
dimensions 20 cm × 20 cm at an angle of 32◦ is presented together with the appro-
priate version of their theory. Comparing these two and using the fact that U =
(2/3)3/2K

3/2
M B

1/2
0 (x + x0)

−1/2 gives a value for KM/KB = 0.87±0.07, i.e. B/B0 =
0.66±0.14. While these are somewhat larger than all of the measured values of
table 2(a, b) they are certainly not unreasonably large and give support to the point
of view expressed in the body of this paper.

One of the limitations of the present experiments is their restriction to relatively
small slopes, as has been the case in many of the previously reported works. It is our
hope to extend the effort beyond this limited range of slope when a suitable deep
containment tank can be found. This would allow the determination of the values of
B/B0 for larger angles than used here and check the accuracy of the estimate given
above.

This work was supported internally at the Viterbi School of Engineering of the
University of Southern California. The author thanks Ms Krista Goulding for her
invaluable help in running the experiments that led to figures 7 and 14. Also, thanks
are extended to the referees for making suggestions that greatly improved the quality
of the paper.
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